首页 | 新闻公告 | 投稿须知 | 编委会 | 关于杂志 | 订阅 | 留言FAQ | 广告服务 | 相关链接 | 下载区 | 联系我们

险境淘金: 基于并购重组事件挖掘的财务脱困预测
Gold panning: Financial relief forecasting of listed enterprises based on the mining of mergers and acquisitions
摘要点击 411  全文点击 0  投稿时间:2020-06-10  修订日期:2021-06-02
  查看/发表评论  下载PDF阅读器
中文关键词  财务困境;预测模型;管理层讨论与分析;并购重组
英文关键词  financial distress; forecasting model; management discussion and analysis; mergers and acquisitions
基金项目  国家自然科学基金项目(面上项目,重点项目,重大项目)
作者单位邮编
江俊毅 中国人民大学信息学院 100872
蒋洪迅* 中国人民大学信息学院 100872
中文摘要
      针对我国上市企业财务困境预测问题, 构造了一个多分类器集成学习模型, 挖掘企业并购重组事件(mergers and acquisitions, M&A)以及年报中管理层讨论与分析(management discussion and analysis, MD&A), 应用文本分析技术研究其能否提供增量信息, 以及新特征的信息价值. 研究结果表明, 新模型在预测准确度(area under curve, AUC)与识别能力(true positive rate, TPR)上均显著优基准模型; 企业财务数据、M&A、MD&A等的多源异构特征, 都帮助该模型获得更佳的预测效果; 基于MD&A的文本情感挖掘发现, 管理层语调越消极悲观, 其企业越易于陷入财务困境; 频繁发生M&A事件更易使企业趋于陷入财务困境; MD&A中语调夸大将不利于模型预测的准确性, 但大规模M&A会削弱这种消极作用.
英文摘要
      This paper constructs a multi-classifier ensemble learning model for listed enterprises in China to forecast their potential financial distress. The novel model incorporates the incremental information from their mergers and acquisitions (M&A) and annual report management discussion and analysis (MD&A) to mine them via text analysis techniques, then quantifies the values of various new features. The experimental results show that the proposed model significantly outperforms the benchmarks in the area under curve (AUC) and the true positive rate (TPR). From financial data, MD&A and M&A, the integration of multi-source new features helps the model obtain the better results. The sentiment mining of the texts finds that the more negative management tone, the more likely the enterprises falling into financial distress; in most cases, frequent large-scale M&A events are likely to incur financial difficulties; the model deteriorates if the management exaggerates in their texts, but large-scale M&A events help to weaken its effects.
关闭

版权所有 © 2007 《系统工程学报》
通讯地址:天津市卫津路92号天津大学25教学楼A区908室 邮编:300072
联系电话/传真:022-27403197 电子信箱: jse@tju.edu.cn