首页 | 新闻公告 | 投稿须知 | 编委会 | 关于杂志 | 订阅 | 留言FAQ | 广告服务 | 相关链接 | 下载区 | 联系我们

资源转移视角下的RCPSP鲁棒资源分配方法
Robust resource allocation method for the RCPCP from a resource transferring perspective
摘要点击 1491  全文点击 0  投稿时间:2018-04-06  修订日期:2018-11-13
  查看/发表评论  下载PDF阅读器
中文关键词  资源受限项目调度问题;资源流网络;鲁棒性;资源转移成本;混合智能算法
英文关键词  RCPSP; Resource flow network; Robustness; Resource transfer cost; Hybrid intelligent algorithm
基金项目  国家自然科学基金项目
作者单位邮编
胡雪君 湖南大学 410082
王建江 国防科技大学 410073
崔南方 华中科技大学 
黄浩 中移互联网有限公司 
中文摘要
      为使项目在工期不确定环境下既能按计划稳定执行又能维持较低的成本, 以项目鲁棒性和资源转移成本为优化对象, 构建了一个鲁棒资源分配优化模型. 引入一种开始时间关键度指标作为项目的解鲁棒性目标, 不同于已有研究均采用基于活动的资源流描述, 模型定义了基于资源的二元决策变量, 以表示某一资源单元在项目活动之间的转移次序. 结合遗传算法和模拟退火算法的优点, 提出了遗传退火混合智能算法对模型求解, 模拟实验结果证明了所提算法在寻优效果和收敛速度方面的优越性. 最后通过真实项目案例, 进一步验证了模型和算法的实用性与有效性.
英文摘要
      Resource allocation is deemed as one of the core issues for the resource constrained project scheduling problem (RCPSP). A resource flow network well represents the resource transferring relations between project activities. In order to achieve schedule stability of a project plan under activity duration uncertainty and to maintain comparatively low project costs, this paper adopts the starting time criticality as a surrogate measure of solution robustness and therefore proposes a robust resource allocation optimization model considering both robustness and resource transfer cost objectives. A hybrid intelligent algorithm (GSA) that combines the merits of the Genetic Algorithm (GA) and the Simulated Annealing (SA) algorithm is developed to solve the model. The GSA algorithm uses a resource-oriented coding scheme and deploys problem-specific genetic operators. Simulation experiments are performed to compare the capability of different solving algorithms in terms of optimization ability, convergence rate and execution efficiency. Finally, this article provides a case study of a real project, in which the performance of the suggested method is compared to those of other resource allocation methods. The comparison results further validate the effectiveness of the proposed model as well as the GSA algorithm.
关闭

版权所有 © 2007 《系统工程学报》
通讯地址:天津市卫津路92号天津大学25教学楼A区908室 邮编:300072
联系电话/传真:022-27403197 电子信箱: jse@tju.edu.cn